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Abstract   This paper is concerned with the inverse problem of optimizing material distribution 
with a view to realizing prescribed apparent fracture toughness in Functionally Graded Material 
(FGM) coatings. The incompatible eigenstrain induced in the FGM coatings after cooling from the 
sintering temperature due to mismatch in the coefficients of thermal expansion is taken into 
consideration. Simulating the nonhomogeneous material properties of the FGM coatings by an 
equivalent eigenstrain, we present an approximation method of calculating stress intensity factor 
(SIF) for an edge crack in the FGM coatings. The approximation method of the SIF is used in the 
inverse problem of optimizing material distribution intending to realize prescribed apparent fracture 
toughness in the FGM coatings. Numerical results obtained for a TiC/Al2O3 FGM coating-Al2O3 
substrate reveal that the apparent fracture toughness significantly depends on the material 
distribution, and can be controlled within possible limits by choosing an optimum material 
distribution profile 
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INTRODUCTION 

 
   Functionally graded materials (FGMs) consist of two 
or more distinct material phases and have a 
distinguished feature that the material distributions and 
microstructures of these materials continuously vary 
along the space variables. This feature provides the 
FGMs with outstanding advantages over homogeneous 
materials and conventional composite materials. From a 
mechanics viewpoint the main advantages of material 
property grading appear to be improved bonding 
strength, toughness, and wear and corrosion resistance, 
and reduced residual and thermal stresses. Therefore, 
FGM coatings have wide applications in automotive 
engines, and cutting and grinding tools to protect the 
surfaces from melting, wear, corrosion and oxidation. 
However, in FGM coatings, cracks perpendicular to the 
coating surface can initiate and propagate into the 
coating under applied thermal or mechanical tensile 
loads. [1]Further, Gecit,[2] and Hu and Evans [3] 
reported that multiple cracking in the coating is a 
common damage mechanism in many coating/substrate 
systems. Thus it is of great importance to design the 
FGM coatings so that they can have higher fracture 
strength. 
 
 
 
 

The design of FGMs invokes the inverse problem by 
which an optimum material distribution profile can be 
determined to realize a prescribed characteristic in 
FGMs for high performance and efficiency in practical 
working conditions. Markworth and Saunders[1] 
considered the inverse problem to optimize an assumed 
functional form for the spatially dependent material 
distribution subject to certain constraints such as 
maximizing or minimizing the heat flux across the 
material. Further references of inverse problems of 
designing FGMs with various geometries subject to 
various constraints can be found in [5-7] 
 

The inverse problems mentioned above 
concentrated on the design of FGMs to obtain desired 
thermal characteristics. To obtain desired fracture 
characteristics in FGMs, the analytical solution to the 
inverse problem of material distribution profiles turns 
to be very complicated due to their nonhomogeneous 
material properties. In addition, the incompatible 
eigenstrain induced in these materials after cooling 
from the sintering temperature due to mismatch in the 
coefficients of thermal expansion is to be considered 
since it has a great influence on their fracture 
characteristics. Sekine and Afsar [8], and Afsar and 
Sekine[9]considered the inverse problems of material 
distribution profiles to obtain desired brittle fracture 
characteristics in semi-infinite FGMs with arbitrary 
variation of material properties for the case of a *Email: mafsaral@me.buet.edu 
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single and periodic edge cracks, respectively. 
 
   In this paper, we concentrate on the inverse problem of 
optimizing material distribution intending to realize 
prescribed apparent fracture toughness in FGM coatings. 
We introduce an approximation method of calculating 
SIFs for an edge crack in the FGM coatings with 
arbitrary variation of material properties. The 
approximation method of SIFs is applied to the inverse 
calculation of optimum material distributions intending 
to realize prescribed apparent fracture toughness in the 
FGM coatings. 
 

MODELING OF FGM COATINGS 
 
Let us consider an FGM coating perfectly bonded to 
a semi-infinite homogeneous elastic substrate as 
shown in Fig. 1. The origin of the Cartesian 
coordinate system x-y is located at the coating 
surface. The FGM coating of finite thickness w is 
composed of two constituents A and B, and their 
volume fractions VA and VB vary in the y direction 
only. The constituent of the substrate is B. The 
Young’s modulus, Poisson’s ratio and the coefficient 
of thermal expansion of the coating region are 
denoted by E, ν and α, respectively, while the 
corresponding properties of the homogeneous 
substrate are designated by E0, ν0 and α0. When such 
a composite is fabricated and cooled after processing, 
an incompatible eigenstrain is induced in the FGM 
coating, which is given by 

T∆ααε )( 0
* −= , (1) 

where ∆T is the difference in the processing and 
room temperatures. Since the FGM coating is 
assumed to be isotropic, the components of the 
incompatible eigenstrain are equal. For this model of 
the FGM coating in plane strain condition, we carry 
out inverse calculations of material distributions 
intending to realize prescribed apparent fracture 
toughness in the FGM coating subjected to a far-field 
applied load. 
 
 
 

INVERSE ANALYSIS OF BRITTLE FRACTURE 
CHARACTERISTICS 

 
   FGMs are nonhomogeneous solids and, therefore, 
their nonhomogeneities have to be considered in 
studying the fracture characteristics of these materials. 
The consideration of these nonhomogeneities 
complicates the analytical studies due to mathematical 
difficulties. Thus it is often conventional to regard the 
material properties to be some certain assumed functions 
of space variable, for instance, exponential and power 
functions, in order to simplify the problems. However, 
in the inverse design of FGMs, in which material 
distribution profiles have to be determined to achieve 
desired fracture characteristics, special functional forms 
of the properties cannot be assumed, since these 
assumed functional forms of the properties may not be 
physically realizable for some materialdistribution 
profiles obtained by inverse calculations. Therefore, as 
an alternate approach, an approximation method is used 
in this study to calculate SIFs for a crack in FGM 
coatings and is employed in the inverse problem of 
calculating material distribution profiles in FGM 
coatings intending to realize prescribed fracture 
characteristics. 
 
Approximation method of SIF 
In the approximation method of SIFs, we first 
homogenize the FGM coating by simulating the 
material nonhomogeneities by a distribution of 
equivalent eigenstrain. The distribution of the 
equivalent eigenstrain to be determined is such that 
the elastic fields are identical in both the FGM and 
the homogenized coatings under the same loading 
conditions. After determining the distribution of the 
equivalent eigenstrain, a method is formulated to 
calculate SIFs for a crack in the homogenized 
coatings subjected to external loadings. Since the 
equivalent eigenstrain is determined from the 
condition of identical elastic fields in the uncracked 
FGM and homogenized coatings, the elastic filed in 
the cracked homogenized coatings cannot exactly 
represent the elastic field in the cracked FGM 
coatings. However, the validity of the approximation 
method is within acceptable limits as discussed in our 
previous work [8]. 

 
As stated earlier, the equivalent eigenstrain is 

determined from the condition of identical elastic 
fields in the uncracked FGM and homogenized 
coatings subjected to the same loading condition. To 
determine the elastic field, we first consider an FGM 
coating bonded to a semi-infinite substrate subjected 
to the far-field tensile stress as shown in Fig. 1. As 
given by Eq. (1), an incompatible eigenstrain )(* yε , 
which is a function of y only, is induced in the FGM 
coating. The resultant elastic field in this coating is 
obtained by superposing the elastic field induced by 

Fig. 1 Analytical model of an FGM coating perfectly 
bonded to a semi-infinite homogeneous elastic 
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the incompatible eigenstrain )(* yε  and that 
developed due to the applied stress. The elastic field 
in the FGM coating due to the applied stress can be 
derived as 
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In deriving Eq. (2), it is assumed that yσ  = 0 and the 
strain component xε  in the coating is equal to that in the 
substrate under the uniform stress 0

xσ , since the 
thickness w of the FGM coating is small in comparison 
with that of the substrate. To obtain the elastic field due 
to the incompatible eigenstrain, we have the following 
stress-strain relations: 
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In plane strain condition, zε = 0 and also as before 

yσ = 0. Again, it is noted that the thickness w is 
small. Therefore, the total strain in the x and y 
directions will be completely suppressed by the 
restraining effect from the substrate. Thus we obtain 
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The resultant field in the FGM coating is thus 
written as 
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Now we consider a semi-infinite homogeneous 
medium consisting of material B with the same 
geometry as shown in Fig. 1. In addition to the far-
field uniform applied stress 0

xσ , the corresponding 
FGM coating region of this medium is assumed to 
have the same incompatible eigenstrain )(* yε . The 
resultant elastic field in the corresponding FGM 
coating region for this case can be readily derived as 
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Now let us consider a distribution of equivalent 
eigenstrain e

iε , where i = x, y, and z, in the 
corresponding FGM coating region of the semi-
infinite homogeneous medium such that the elastic 
fields in the FGM coating regions become identical. 
Thus we can write 
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where e
iσ  and ie , respectively, represent the stress 

and elastic strain arising due to the equivalent 
eigenstrain e

iε . Noting that ie  is related to e
iσ  by 

Hooke’s law and using Eqs.(5) through (9) we obtain 
the expressions for equivalent eigenstrains as 
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and the resultant stress components in the semi-
infinite homogeneous medium are derived as  
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The other stress component is zero. 
 
Fig.2 shows the semi-infinite homogeneous medium 
with distributed incompatible and equivalent 
eigenstrains in the coating region under the far-field 
tensile stress, which is obtained by homogenizing the 

Fig. 2 Semi-infinite homogeneous medium 
with a distribution of incompatible and 

equivalent eigenstrains in the coating region 
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FGM coating/substrate system shown in Fig. 1. Now 
suppose that the semi-infinite homogeneous medium 
in Fig. 2 contains an edge crack of length l as shown 
 

 
in Fig. 3. For this crack, we can obtain a singular 

integral equation replacing the crack by a continuous 
distribution of edge dislocations and can be converted 
to a system of algebraic equations to determine the 

unknown density function )( sx Tϕ as follows 
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Here, the collocation and integration points are given 
by 
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It can be shown that the SIF is 

),1(2
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where )1(+xϕ  is computed from Krenk’s 
interpolation formula. The SIFs calculated by above 
formulations give the approximate values of SIFs for 
the same crack in the FGM coating as shown in Fig. 
1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 An edge crack in a semi-infinite 
homogeneous medium with distributed 

incompatible and equivalent eigenstrains in the 
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Fig. 4 Flow chart for inverse problem of material distribution to realize prescribed apparent fracture 
toughness 
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Apparent fracture toughness 
The SIF at the tip of a crack in homogeneous isotropic 
materials without any internal stress is expressed in 
terms of external applied stresses and geometric factors. 
On the other hand, the SIF at the tip of a crack in FGMs 
is expressed in terms of not only external applied 
stresses and geometric factors but also internal stresses 
and material distributions. For the brittle materials, 
fracture occurs from the crack tip when the SIF attains 
the critical value, i.e. the intrinsic fracture toughness. By 
ignoring the internal stresses and the material 
distributions in a FGM, let us imagine the FGM with the 
same geometric configuration under the external applied 
stress which corresponds to its fracture stress. Then, we 
can evaluate the critical value of SIF through the 
formula of SIF for a crack in homogeneous isotropic 
materials, which is called the apparent fracture 
toughness of FGMs. 
 

Now we consider an edge crack of length l in the 
FGM coating bonded to the semi-infinite 
homogeneous substrate as shown in Fig. 1. When the 
far-field applied stress at which the fracture occurs 
from the crack tip is cσ  on the average, the apparent 
fracture toughness of the FGM coating-substrate 
system can be given, using the formula of SIF for an 
edge crack of length l in semi-infinite homogeneous 
isotropic materials, by 

lK c
a
Ic πσ12.1= . (15) 

Although the far-field applied stress f
xσ  in the FGM 

coating is non-uniform, we can regard cσ  to be equal 
to the far-field applied stress acting in the semi-
infinite homogeneous substrate because the thickness 
of the FGM coating is small in comparison with that 
of the substrate. Therefore, cσ  is given by 0

xσ  
satisfying 

IcI KK =  (16) 
where IcK  is the intrinsic fracture toughness of the 
FGM coating. 
 
Inverse analysis of apparent fracture toughness 
Suppose that a profile of the apparent fracture toughness 

a
IcK  is prescribed over a region of distance L measured 

from the free surface of a FGM coating. To carry out the 
inverse calculations, the distance L is divided by a large 
number n so that every small interval ∆L is equal to L/n.. 
The distances Lj ( j = 1,2,…,n) on L are taken as j times  

 
∆L. The volume fraction of constituent A that is 

assumed to be a constant over Lj-1 ≤ -y ≤ Lj is denoted 
by j

AV . Using the volume fractions j
AV  as design 

variables, the optimization problem of the material 
distribution profile over the region of distance L in 
the FGM coating is set up as 

( )
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j
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j
I

n
AAA
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221
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where j
IK  is the SIF at the crack tip which is located 

at the point y = -Lj and j
IcK  is the intrinsic fracture 

toughness on Lj-1 ≤ -y ≤ Lj. The material properties 
jE , jν , jα  and j

IcK ( j = 1,2,…,n) in the FGM 
coating are evaluated by using the mixture rules [10, 
11]. Equation (17) can be solved by using a 
mathematical programming method. A flow chart 
describing the minimization procedure of the 
objective function ),...,,( 21 n

AAA VVVF  is shown in Fig. 
4. After convergence, the minimum value of the 
objective function is compared with a small positive 
quantity ε to verify that the solution of the inverse 
problem is acceptable. 
 
 
 

Material
Young’s
Modulus

(GPa)

Shear
Modulus

(GPa)

Poisson’s
Ratio

CTE
(/°C)

KIc
(MPa m1/2)

TiC 462 194.12 0.19 7.4×10-6 4.1
Al2O3 380 150.79 0.26 8.0×10-6 3.5

Table –1 Material properties of TiC and Al2O3 

Fig. 5 Prescribed apparent fracture toughness 
in a TiC/Al2O3 FGM coating bonded to a semi-

infinite homogeneous substrate of Al2O3 
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NUMERICAL RESULTS AND DISCUSSION 
 

   To obtain numerical results, a TiC/Al2O3 FGM coating 
bonded to a semi-infinite homogeneous substrate of 
Al2O3 is considered in this study as an example. The 
values of the mechanical and thermal properties of TiC 
and Al2O3 are shown in Table 1. The temperature range 
∆T is taken as 1000° C and the thickness w is taken as 1 
mm. 
 
   Fig. 5 shows the prescribed apparent fracture 
toughness a

IcK  as a function of normalized distance y/w. 
The broken line in Fig. 5 represents the upper limit of 

a
IcK  obtained for the maximum possible volume fraction 

of TiC. The line corresponding to VA = 0 represents the 
intrinsic fracture toughness 0

IcK  of the substrate of 
Al2O3. The solid portions (y/w = 0.02 to 0.75) of the 
curves 1, 2 and 3 indicate the prescribed distribution of 

a
IcK  which is assumed as to be higher than 0

IcK . For this 
prescribed apparent fracture toughness, the 
corresponding material distribution profiles are 
calculated which are shown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
by the solid portions of the curves 1,2 and 3 in Fig. 6. 
The apparent fracture toughness a

IcK  over the 
normalized distance from y/w = 0.75 to 1 as shown by 
the dotted portions of the curves 1, 2 and 3 in Fig. 5 is 
calculated for the assumed material distribution profiles 
shown by the dotted portions of the curves 1, 2 and 3 in 
Fig. 6. Although the broken line in Fig. 5 represents the 
upper limit of the apparent fracture toughness a

IcK , it 
may not be expected that any profiles of the prescribed 
apparent fracture toughness below this upper limit can 
be realized within the allowable limits. 

 
The prescribed apparent fracture toughness, 

considered in all the examples as shown in Fig. 5 is 
realized by designing the FGM coating having the 

material distributions shown in Fig. 6. From this fact, it 
can be concluded that an apparent fracture toughness in 
FGM coatings bonded to a semi-infinite homogeneous 
substrate can be controlled within possible limits so as 
to achieve desired brittle fracture characteristics by 
choosing an appropriate material distribution in the 
coatings. 
 

CONCLUSIONS 
 

   An inverse method has been developed for 
optimization of material distribution intending to realize 
prescribed apparent fracture toughness in FGM coatings. 
The incompatible eigenstrain induced in the coatings 
due to mismatch in the coefficients of thermal expansion 
after cooling from the sintering temperature has also 
been taken into consideration. An approximation 
method of calculating SIFs for an edge crack in the 
FGM coatings subjected to a far field applied load is 
presented in which the nonhomogeneous material 
properties of the FGM coatings are simulated by a 
distribution of equivalent eigenstrain. The 
approximation method of SIFs is applied to the inverse 
calculations of material distributions intending to realize 
prescribed apparent fracture toughness in the coatings. 
The numerical results are obtained for a TiC/Al2O3 
FGM coating-Al2O3 substrate system which are shown 
graphically. It can be concluded that the apparent 
fracture toughness in FGM coatings can be controlled 
within possible limits so as to achieve desired brittle 
fracture characteristics by choosing an optimum material 
distribution in the coating. 
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